3.6.1 \(\int \frac {(c+d x+e x^2+f x^3) \sqrt {a+b x^4}}{x^2} \, dx\) [501]

Optimal. Leaf size=341 \[ \frac {2 \sqrt {b} c x \sqrt {a+b x^4}}{\sqrt {a}+\sqrt {b} x^2}-\frac {\left (3 c-e x^2\right ) \sqrt {a+b x^4}}{3 x}+\frac {1}{4} \left (2 d+f x^2\right ) \sqrt {a+b x^4}+\frac {a f \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{4 \sqrt {b}}-\frac {1}{2} \sqrt {a} d \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )-\frac {2 \sqrt [4]{a} \sqrt [4]{b} c \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a+b x^4}}+\frac {\sqrt [4]{a} \left (3 \sqrt {b} c+\sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{b} \sqrt {a+b x^4}} \]

[Out]

-1/2*d*arctanh((b*x^4+a)^(1/2)/a^(1/2))*a^(1/2)+1/4*a*f*arctanh(x^2*b^(1/2)/(b*x^4+a)^(1/2))/b^(1/2)-1/3*(-e*x
^2+3*c)*(b*x^4+a)^(1/2)/x+1/4*(f*x^2+2*d)*(b*x^4+a)^(1/2)+2*c*x*b^(1/2)*(b*x^4+a)^(1/2)/(a^(1/2)+x^2*b^(1/2))-
2*a^(1/4)*b^(1/4)*c*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticE(sin(
2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/(b*x
^4+a)^(1/2)+1/3*a^(1/4)*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(
sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(e*a^(1/2)+3*c*b^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2
)+x^2*b^(1/2))^2)^(1/2)/b^(1/4)/(b*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 341, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 13, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.433, Rules used = {1847, 1286, 1212, 226, 1210, 1266, 829, 858, 223, 212, 272, 65, 214} \begin {gather*} \frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\sqrt {a} e+3 \sqrt {b} c\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{b} \sqrt {a+b x^4}}-\frac {2 \sqrt [4]{a} \sqrt [4]{b} c \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a+b x^4}}-\frac {\sqrt {a+b x^4} \left (3 c-e x^2\right )}{3 x}+\frac {2 \sqrt {b} c x \sqrt {a+b x^4}}{\sqrt {a}+\sqrt {b} x^2}+\frac {1}{4} \sqrt {a+b x^4} \left (2 d+f x^2\right )-\frac {1}{2} \sqrt {a} d \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )+\frac {a f \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{4 \sqrt {b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^2,x]

[Out]

(2*Sqrt[b]*c*x*Sqrt[a + b*x^4])/(Sqrt[a] + Sqrt[b]*x^2) - ((3*c - e*x^2)*Sqrt[a + b*x^4])/(3*x) + ((2*d + f*x^
2)*Sqrt[a + b*x^4])/4 + (a*f*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(4*Sqrt[b]) - (Sqrt[a]*d*ArcTanh[Sqrt[a +
 b*x^4]/Sqrt[a]])/2 - (2*a^(1/4)*b^(1/4)*c*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]
*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/Sqrt[a + b*x^4] + (a^(1/4)*(3*Sqrt[b]*c + Sqrt[a]*e)*(Sqrt[a]
+ Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(3*b
^(1/4)*Sqrt[a + b*x^4])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 829

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*((a + c*x^2)^p/(c*e^2*(m + 2*p + 1)*(m +
 2*p + 2))), x] + Dist[2*(p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1266

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m
 - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]

Rule 1286

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(a +
 c*x^4)^p*((d*(m + 4*p + 3) + e*(m + 1)*x^2)/(f*(m + 1)*(m + 4*p + 3))), x] + Dist[4*(p/(f^2*(m + 1)*(m + 4*p
+ 3))), Int[(f*x)^(m + 2)*(a + c*x^4)^(p - 1)*(a*e*(m + 1) - c*d*(m + 4*p + 3)*x^2), x], x] /; FreeQ[{a, c, d,
 e, f}, x] && GtQ[p, 0] && LtQ[m, -1] && m + 4*p + 3 != 0 && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1847

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {
j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rubi steps

\begin {align*} \int \frac {\left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4}}{x^2} \, dx &=\int \left (\frac {\left (c+e x^2\right ) \sqrt {a+b x^4}}{x^2}+\frac {\left (d+f x^2\right ) \sqrt {a+b x^4}}{x}\right ) \, dx\\ &=\int \frac {\left (c+e x^2\right ) \sqrt {a+b x^4}}{x^2} \, dx+\int \frac {\left (d+f x^2\right ) \sqrt {a+b x^4}}{x} \, dx\\ &=-\frac {\left (3 c-e x^2\right ) \sqrt {a+b x^4}}{3 x}+\frac {1}{2} \text {Subst}\left (\int \frac {(d+f x) \sqrt {a+b x^2}}{x} \, dx,x,x^2\right )-\frac {2}{3} \int \frac {-a e-3 b c x^2}{\sqrt {a+b x^4}} \, dx\\ &=-\frac {\left (3 c-e x^2\right ) \sqrt {a+b x^4}}{3 x}+\frac {1}{4} \left (2 d+f x^2\right ) \sqrt {a+b x^4}+\frac {\text {Subst}\left (\int \frac {2 a b d+a b f x}{x \sqrt {a+b x^2}} \, dx,x,x^2\right )}{4 b}-\left (2 \sqrt {a} \sqrt {b} c\right ) \int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx+\frac {1}{3} \left (2 \sqrt {a} \left (3 \sqrt {b} c+\sqrt {a} e\right )\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx\\ &=\frac {2 \sqrt {b} c x \sqrt {a+b x^4}}{\sqrt {a}+\sqrt {b} x^2}-\frac {\left (3 c-e x^2\right ) \sqrt {a+b x^4}}{3 x}+\frac {1}{4} \left (2 d+f x^2\right ) \sqrt {a+b x^4}-\frac {2 \sqrt [4]{a} \sqrt [4]{b} c \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a+b x^4}}+\frac {\sqrt [4]{a} \left (3 \sqrt {b} c+\sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{b} \sqrt {a+b x^4}}+\frac {1}{2} (a d) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x^2}} \, dx,x,x^2\right )+\frac {1}{4} (a f) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,x^2\right )\\ &=\frac {2 \sqrt {b} c x \sqrt {a+b x^4}}{\sqrt {a}+\sqrt {b} x^2}-\frac {\left (3 c-e x^2\right ) \sqrt {a+b x^4}}{3 x}+\frac {1}{4} \left (2 d+f x^2\right ) \sqrt {a+b x^4}-\frac {2 \sqrt [4]{a} \sqrt [4]{b} c \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a+b x^4}}+\frac {\sqrt [4]{a} \left (3 \sqrt {b} c+\sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{b} \sqrt {a+b x^4}}+\frac {1}{4} (a d) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^4\right )+\frac {1}{4} (a f) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x^2}{\sqrt {a+b x^4}}\right )\\ &=\frac {2 \sqrt {b} c x \sqrt {a+b x^4}}{\sqrt {a}+\sqrt {b} x^2}-\frac {\left (3 c-e x^2\right ) \sqrt {a+b x^4}}{3 x}+\frac {1}{4} \left (2 d+f x^2\right ) \sqrt {a+b x^4}+\frac {a f \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{4 \sqrt {b}}-\frac {2 \sqrt [4]{a} \sqrt [4]{b} c \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a+b x^4}}+\frac {\sqrt [4]{a} \left (3 \sqrt {b} c+\sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{b} \sqrt {a+b x^4}}+\frac {(a d) \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^4}\right )}{2 b}\\ &=\frac {2 \sqrt {b} c x \sqrt {a+b x^4}}{\sqrt {a}+\sqrt {b} x^2}-\frac {\left (3 c-e x^2\right ) \sqrt {a+b x^4}}{3 x}+\frac {1}{4} \left (2 d+f x^2\right ) \sqrt {a+b x^4}+\frac {a f \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{4 \sqrt {b}}-\frac {1}{2} \sqrt {a} d \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )-\frac {2 \sqrt [4]{a} \sqrt [4]{b} c \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a+b x^4}}+\frac {\sqrt [4]{a} \left (3 \sqrt {b} c+\sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{b} \sqrt {a+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 12.67, size = 267, normalized size = 0.78 \begin {gather*} \frac {1}{12} \left (\frac {\sqrt {a+b x^4} (-12 c+x (6 d+x (4 e+3 f x)))}{x}+\frac {3 a f \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{\sqrt {b}}-6 \sqrt {a} d \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )-\frac {24 i a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} c \sqrt {1+\frac {b x^4}{a}} E\left (\left .i \sinh ^{-1}\left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} x\right )\right |-1\right )}{\sqrt {a+b x^4}}+\frac {8 \sqrt {b} \left (-3 i \sqrt {b} c+\sqrt {a} e\right ) \sqrt {1+\frac {b x^4}{a}} F\left (\left .i \sinh ^{-1}\left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} x\right )\right |-1\right )}{\left (\frac {i \sqrt {b}}{\sqrt {a}}\right )^{3/2} \sqrt {a+b x^4}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^2,x]

[Out]

((Sqrt[a + b*x^4]*(-12*c + x*(6*d + x*(4*e + 3*f*x))))/x + (3*a*f*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/Sqrt
[b] - 6*Sqrt[a]*d*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]] - ((24*I)*a*Sqrt[(I*Sqrt[b])/Sqrt[a]]*c*Sqrt[1 + (b*x^4)/a]
*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/Sqrt[a + b*x^4] + (8*Sqrt[b]*((-3*I)*Sqrt[b]*c + Sqrt[
a]*e)*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(((I*Sqrt[b])/Sqrt[a])^(3/2)*
Sqrt[a + b*x^4]))/12

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.42, size = 284, normalized size = 0.83

method result size
elliptic \(-\frac {c \sqrt {b \,x^{4}+a}}{x}+\frac {f \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {e x \sqrt {b \,x^{4}+a}}{3}+\frac {d \sqrt {b \,x^{4}+a}}{2}+\frac {2 a e \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {a f \ln \left (2 x^{2} \sqrt {b}+2 \sqrt {b \,x^{4}+a}\right )}{4 \sqrt {b}}+\frac {2 i \sqrt {b}\, c \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {\sqrt {a}\, d \arctanh \left (\frac {\sqrt {a}}{\sqrt {b \,x^{4}+a}}\right )}{2}\) \(274\)
risch \(-\frac {c \sqrt {b \,x^{4}+a}}{x}+\frac {f \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {a f \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{4 \sqrt {b}}+\frac {e x \sqrt {b \,x^{4}+a}}{3}+\frac {2 a e \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {d \sqrt {b \,x^{4}+a}}{2}+\frac {2 i \sqrt {b}\, c \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {\sqrt {a}\, d \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{2}\) \(280\)
default \(f \left (\frac {x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {a \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{4 \sqrt {b}}\right )+e \left (\frac {x \sqrt {b \,x^{4}+a}}{3}+\frac {2 a \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+d \left (\frac {\sqrt {b \,x^{4}+a}}{2}-\frac {\sqrt {a}\, \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{2}\right )+c \left (-\frac {\sqrt {b \,x^{4}+a}}{x}+\frac {2 i \sqrt {b}\, \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )\) \(284\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

f*(1/4*x^2*(b*x^4+a)^(1/2)+1/4*a/b^(1/2)*ln(x^2*b^(1/2)+(b*x^4+a)^(1/2)))+e*(1/3*x*(b*x^4+a)^(1/2)+2/3*a/(I/a^
(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF
(x*(I/a^(1/2)*b^(1/2))^(1/2),I))+d*(1/2*(b*x^4+a)^(1/2)-1/2*a^(1/2)*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1/2))/x^2))+c
*(-1/x*(b*x^4+a)^(1/2)+2*I*b^(1/2)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1
/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2
))^(1/2),I)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + x^2*e + d*x + c)/x^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.24, size = 30, normalized size = 0.09 \begin {gather*} {\rm integral}\left (\frac {\sqrt {b x^{4} + a} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{2}}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^2, x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 3.18, size = 206, normalized size = 0.60 \begin {gather*} \frac {\sqrt {a} c \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac {3}{4}\right )} - \frac {\sqrt {a} d \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{2}} \right )}}{2} + \frac {\sqrt {a} e x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} + \frac {\sqrt {a} f x^{2} \sqrt {1 + \frac {b x^{4}}{a}}}{4} + \frac {a d}{2 \sqrt {b} x^{2} \sqrt {\frac {a}{b x^{4}} + 1}} + \frac {a f \operatorname {asinh}{\left (\frac {\sqrt {b} x^{2}}{\sqrt {a}} \right )}}{4 \sqrt {b}} + \frac {\sqrt {b} d x^{2}}{2 \sqrt {\frac {a}{b x^{4}} + 1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**2,x)

[Out]

sqrt(a)*c*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x*gamma(3/4)) - sqrt(a)*d*asinh
(sqrt(a)/(sqrt(b)*x**2))/2 + sqrt(a)*e*x*gamma(1/4)*hyper((-1/2, 1/4), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*ga
mma(5/4)) + sqrt(a)*f*x**2*sqrt(1 + b*x**4/a)/4 + a*d/(2*sqrt(b)*x**2*sqrt(a/(b*x**4) + 1)) + a*f*asinh(sqrt(b
)*x**2/sqrt(a))/(4*sqrt(b)) + sqrt(b)*d*x**2/(2*sqrt(a/(b*x**4) + 1))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + x^2*e + d*x + c)/x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {b\,x^4+a}\,\left (f\,x^3+e\,x^2+d\,x+c\right )}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x^4)^(1/2)*(c + d*x + e*x^2 + f*x^3))/x^2,x)

[Out]

int(((a + b*x^4)^(1/2)*(c + d*x + e*x^2 + f*x^3))/x^2, x)

________________________________________________________________________________________